Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available January 2, 2026
- 
            Climate warming is increasing ocean stratification, which in turn should decrease the nutrient flux to the upper ocean. This may slow marine primary productivity, causing cascading effects throughout food webs. However, observing changes in upper ocean nutrients is challenging because surface concentrations are often below detection limits. We show that the nutricline depth, where nutrient concentrations reach well-detected levels, is tied to productivity and upper ocean nutrient availability. Next, we quantify nutricline depths from a global database of observed vertical nitrate and phosphate profiles to assess contemporary trends in global nutrient availability (1972–2022). We find strong evidence that the P-nutricline (phosphacline) is mostly deepening, especially throughout the southern hemisphere, but the N-nutricline (nitracline) remains mostly stable. Earth System Model (ESM) simulations support the hypothesis that reduced iron stress and increased nitrogen fixation buffer the nitracline, but not phosphacline, against increasing stratification. These contemporary trends are expected to continue in the coming decades, leading to increasing phosphorus but not nitrogen stress for marine phytoplankton, with important ramifications for ocean biogeochemistry and food web dynamics.more » « lessFree, publicly-accessible full text available February 11, 2026
- 
            Free, publicly-accessible full text available December 18, 2025
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            In addition to scientific questions, clinical trialists often explore or require other design features, such as increasing the power while controlling the type I error rate, minimizing unnecessary exposure to inferior treatments, and comparing multiple treatments in one clinical trial. We propose implementing adaptive seamless design (ASD) with response adaptive randomization (RAR) to satisfy various clinical trials’ design objectives. However, the combination of ASD and RAR poses a challenge in controlling the type I error rate. In this paper, we investigated how to utilize the advantages of the two adaptive methods and control the type I error rate. We offered the theoretical foundation for this procedure. Numerical studies demonstrated that our methods could achieve efficient and ethical objectives while controlling the type I error rate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
